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Abstract

We propose a novel systemic risk measurement model based on stochastic processes,

correlation networks and conditional probabilities of default. For each country we con-

sider three different economic sectors (sovereigns, corporates, banks) and we model each

of them as a linear combination of two stochastic processes: a country-specific idiosyn-

cratic component and a common systematic factor. Through correlation networks we

derive conditional default probabilities, thus obtaining the CoRisk, which measures the

variation in the probability of default due to contagion effects. Our model is applied

to Eurozone countries, and the results show that the sovereign crisis has increased sys-

temic risks more than the financial one: the two events together have caused a phase

transition difficult to reverse, as risk propagation does not act as a mean for balancing

inequalities across countries but, on the contrary, weakens the weakest and strengthens

the strongest.
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1 Introduction

The financial crisis and, more recently, the sovereign crisis, have led to an in-

creasing research literature on systemic risk, with different definitions and mea-

surement models.

According to ECB (2009) ”Systemic risk is the risk of experiencing a strong

systemic event, which adversely affects a number of systemically important in-

termediaries or markets”. This definition introduces two key elements for the

study of systemic risk: as emphasised by Borio and Drehmann (2009), financial

instability firstly involves the system as a whole, and not only individual insti-

tutions; secondly, it does not consider the financial system in isolation, but as

ultimately linked to the real economy. While systemic risk definitions share this

broad view and differ on implementation details, such as the involved agents,

the kind of shocks or the analysed dynamics, measurement models are still quite

divergent.

A first distinction between systemic risk models derives from the use of a

cross-sectional rather than a time-dynamic perspective: while the former mostly

concentrates on the relationships between agents operating in the market, the lat-

ter focuses on cause-and-effect relationships over time. As a consequence, we can

distinguish between models centred on the notion of contagion, and models that

aim at predicting what will happen in the nearby future, in an early-warning per-

spective. In addition, while contagion models identify transmission channels, thus

embracing the whole system but only for descriptive purposes, time-dependent

models associate a specific risk measure to individual institutions.

A second distinction originates in the identification of the risk sources, thus

setting endogenous against exogenous causes, as well as idiosyncratic against

systematic shocks.

A third diversity concerns the economic environment as the context in which

systemic risk arises and propagates: most models concentrate either on the fi-

nancial or the sovereign sector, while others include both of them.

In this work we will overcome these classifications by combining different

approaches. First of all, for each country we will consider three different eco-

nomic sectors: sovereigns, corporates and financials (banks). Secondly, we will

model each of them as a spread measure, derived as a linear combination of two

stochastic processes: an idiosyncratic and a systematic factor. Doing so, we can

disentangle, in an endogenous way, different sources of risk. Third, the spread

will be used for two purposes: (a) to derive correlation networks, thus identifying

contagion channels in a cross-sectional perspective; (b) to calculate the default

probabilities associated to each economic sector in each country, in an early

warning perspective. Last, we will combine default probabilities and correlation

networks by deriving CoRiskin and CoRiskout, two time-dependent measures

which explain to what extent the default probability of each economic sector is
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affected by (CoRiskin) or affects (CoRiskout) its neighbours when contagion is

included.

The described strategy allows to simultaneously assign precise risk measures

to the different agents operating in the system by considering, at the same time,

the system as a whole. Differently from most related papers, we will allow for

both positive and negative contagion, meaning that the default probability of

each agent can be decreased or increased by its relationships with other nodes.

Moreover, the distinction between incoming and outgoing effects enables to de-

couple the identification of vulnerable, rather than systemic important economic

sectors. Finally, in order to overcome the micro- vs macro-based dualism rec-

ognizable in the literature, we will derive aggregate default probabilities at the

country level using a bottom-up approach. As a consequence, we will obtain a

synthetic risk measure for each country, that can be disentangled in all its com-

ponents according to the source (economic sector) or the kind (sector-specific or

contagion) of risk, and which varies along time reacting to both idiosyncratic

and systematic shocks.

2 An overview of systemic risk measures

As previously introduced, the study of systemic risk is particularly problem-

atic because of the high number of dimensions that can be included: according

to this choice different perspectives have been adopted and, therefore, differ-

ent statistical tools have been used and applied to a great variety of data in

many geographical regions and periods. For simplicity we have chosen two main

discriminant factors, thus dividing models on systemic risk into three main cat-

egories: bivariate models, causal models and cross-sectional models. While the

first two explicitly deal with the time-dimension in an endogenous rather than

an exogenous way, the latter focuses on the cross-sectional dimension.

Bivariate Models. From a chronological viewpoint, the first systemic risk

measures have been proposed for the financial sector, in particular by Acharya

et al. (2010), Adrian and Brunnermeier (2011), Brownlees and Engle (2012),

Acharya et al. (2012), Dumitrescu and Banulescu (2014) and Hautsch et al.

(2015). On the basis of market share prices, these models consider systemic

risk as endogenously determined and calculate the quantiles of the estimated

loss probability distribution of a bank conditional on an extreme event in the

financial market. A similar approach has been applied by Popescu and Turcu

(2014) to the sovereign sector, using bond interest rates.

The above described methodology is useful to identify the most systemically

important institutions, since its bivariate nature allows the derivation of condi-

tional default probabilities or losses during shock events in the reference market,
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possibly caused by other institutions. However, it does not address the issue of

how risks are transmitted between different institutions in a multivariate frame-

work.

Causal Models. A different stream of research considers systemic risks as ex-

ogenous factors and has been proposed, among others, by Chong et al. (2006),

Longstaff (2010) and Shleifer and Vishny (2010), who examined the impact of

monetary policies on default probabilities for the banking sector, with a par-

ticular focus on crisis periods. More general causal models, proposed by Duffie

et al. (2000), Lando and Nielsen (2010), Koopman et al. (2012), Betz et al.

(2014) and Duprey et al. (2015), explain whether the default probability of a

bank, a country, or a company depends on a set of exogenous risk sources, thus

combining idiosyncratic and systematic factors. A further evolution has been

proposed, among others, by Bartram et al. (2007), Ang and Longstaff (2012)

and Brownlees et al. (2014): they combine idiosyncratic and systematic sources

of distress through endogenous models expressed in terms of univariate stochastic

processes.

While powerful from an early warning perspective, causal models, similarly

to bivariate ones, concentrate on single institutions rather than on the economic

system as a whole and, therefore, underestimate systemic sources of risk arising

from contagion effects within the system.

Cross-sectional Models. In order to address the multivariate nature of sys-

temic risk, researchers have recently proposed correlation network models, able

to combine the rich structure of financial networks (see, e.g., Lorenz et al., 2009;

Battiston et al., 2012) with a parsimonious approach based on the dependence

structure among market prices. The first contributions in this framework are Bil-

lio et al. (2012) and Diebold and Yilmaz (2014), who derive connectedness mea-

sures based on Granger-causality tests and variance decompositions. Barigozzi

and Brownlees (2013), Ahelegbey et al. (2015) and Giudici and Spelta (2015)

extend such methodology by introducing stochastic graphical models, while Das

(2015) derives a systemic risk decomposition into individual and network contri-

butions.

Correlation network models are very useful for identifying the most important

contagion channels in a cross-sectional perspective, thus identifying the most vul-

nerable institutions. However, since they are built on cross-sectional data, they

can not be used as predictive models in a time-varying context. Moreover, the

importance of each institution only depends on its position in the graph, and not

on its specific risk.

A new combined approach. Bivariate and causal models explain whether the
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risk of a bank, a company, or of a country, is affected by a market crisis event or

by a set of exogenous risk factors; correlation network models explain whether

the same risk depends on contagion effects. We improve all these three classes of

models by introducing multivariate stochastic processes and by combining them

with partial correlation networks: doing so, we merge the advantages of bivariate

models (endogeneity and non-linearity), causal models (predictive capability) and

correlation networks (contagion channels). To achieve our aim, we significantly

extend the approach by Ang and Longstaff (2012) and Brownlees et al. (2014),

by employing a correlated set of linear combinations of two stochastic processes

(a systematic and an idiosyncratic one) rather than a single process, and by

applying it to three rather than one economic sector.

In more detail, we first select three risk measures from publicly available data:

(a) the spread between the cost of debt for countries (interest rates on 10-years

maturity government bonds) and a benchmark rate, which gives a measure of

sovereign risk; (b) the spread between the cost of debt for corporates (aggregate

interest rates on bank lendings to non-financial corporates) and a benchmark

rate, which gives a measure of corporate risk; (c) the spread between the funding

cost of the banking system (aggregate interest rates on deposits of non-financial

corporates and households) and a benchmark rate, which gives a measure of bank

risk. We then define three stochastic processes on the three risk measures so that,

on the basis of the estimated parameters, a probability of default can be calcu-

lated, for each economic sector and within each country, independently from the

others. We then estimate a correlation network model based on the estimated

partial correlations between the risk measures: by so doing, we simultaneously

consider both the cross-sectional and the time perspectives. In addition, we can

derive default probabilities conditionally on the estimated network. The dif-

ference between such conditional probabilities and the unconditional ones can

be employed to assess the effect of systemic contagion: the resulting measure

will be named CoRisk. We propose two different kinds of CoRisk: CoRiskin,

which measures how an economic sector is influenced by the default probability

of its neighbours, thus providing a measure of its vulnerability (as in bivariate

and econometric causal models); CoRiskout, which measures to what extent each

economic sector influences its neighbours, thus providing a measure of its sys-

temic importance (as in cross-sectional models). Furthermore, since conditional

default probabilities can be aggregated at the country level, we can obtain a

country specific default probability that can be disentangled according to all the

dimensions introduced so far: time, economic sector (sovereign, corporate and

bank), kind of risk (sector-specific and contagion), or source of risk (idiosyncratic

and systematic).

We remark that a multivariate approach related to ours has been suggested

by Gray et al. (2013), Ramsay and Sarlin (2015) and Schwaab et al. (2015).
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We extend these contributions by taking endogeneity into account as well as by

using a proper probability metric, thus making explicit what suggested in Das

(2015): a measure of systemic risk that can be decomposed in an individual

node and a network component. Other similar approaches have been recently

proposed by Mezei and Sarlin (2015) and Betz et al. (2016): the former define an

aggregation operator in order to jointly estimate the importance of each single

node as well as contagion effects deriving from links with other nodes; the latter

develop a tail risk analysis of networks in order to build a robust set of regressors

for defining systemic contributions. We improve both approaches by calculating

node default probabilities for three different economic sectors in each country and

by deriving link measures of contagion through partial correlations between linear

combinations of stochastic processes: in such a way we can (a) allow for non-linear

effects through stochastic differential equations, (b) allow for contagion effects not

only between, but also within each country, and (c) disentangle the idiosyncratic

and the systematic, as well as the sector-specific and the systemic components

for the three economic sectors in each country. In addition, our CoRisk measure

is allowed to be both positive or negative, meaning that the resulting default

probability of each economic sector or country can be increased or decreased

according to the sign of partial correlations. From an economic viewpoint, when

a country is negatively related to troubled countries, its final default probability

decreases because it is perceived as a flight-to-quality haven, meaning that it

is positively affected by contagion effects. On the contrary, when countries are

positively connected to troubled economies their default probability increases

because they suffer negative contagion. Such a distinction between positive and

negative contagion, to our knowledge, only appears in Grinis (2015).

Our proposed model will be applied to data from Eurozone countries in

the recent time period. For descriptive purposes, we have identified four cru-

cial time windows and we will show networks and risk distributions in each of

them: the pre-crisis period (2003-2006), the financial-crisis period (2007-2009),

the sovereign-crisis period (2010-2012) and the post-crisis period (2013-2015).

Our main economic findings can be summarized according to three dimen-

sions: (a) the economic sector dimension, (b) the country dimension and (c) the

time dimension at the aggregate country level. Concerning (a), the corporate

sector is strongly influenced by the systematic component, and this explains why

it reacts to monetary policy changes more than sovereigns and banks. On the

other hand, the sovereign and bank sectors have deeply suffered, respectively, the

sovereign and the financial crisis, and they seem to behave quite similarly, thus

confirming their ”diabolic loop”. In the last period, correlation networks show

the creation of two distinct clusters, characterized by positive within and nega-

tive cross correlations, that clearly separate peripheral and core economies: such

separation creates vicious circles within each cluster, further alienating troubled
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and strong economies. Concerning (b), peripheral countries mostly behave as ex-

porters, rather than importers of system risk: as a consequence, core economies

are mostly affected by contagion risk, while peripheral countries strongly suffer

high sector-specific default probabilities. Concerning (c), the sovereign crisis has

had a larger impact on systemic risk with respect to the financial crisis. A possi-

ble explanation consists in different ways peripheral and core economies reacted

to the financial crisis: peripheral countries, with high public debts, had little fis-

cal space to improve balance sheets and, therefore, the financial crisis triggered

their imbalances to emerge in the subsequent sovereign crisis. However, the se-

quence of these two events has determined an irreversible phase transition, lead-

ing to a new non-stable and non-optimal equilibrium, where instability derives

from peripheral-countries trajectories diverging from core ones. This conclusion

is further confirmed by the time evolution of risk distributions across Eurozone

countries and by the role of risk propagation, which does not act as a mean for

balancing inequalities across countries but, on the contrary, weakens the weakest

and strengthens the strongest ones.

The paper is structured as follows: Sections 3 and 4 describe the proposed

models, with Section 3 introducing multivariate linear combinations of inter-

est rate spreads and partial correlation networks and Section 4 defining default

probabilities and CoRisk. Section 5 presents data and the empirical evidence

obtained from multivariate stochastic processes and partial correlation networks,

while Section 6 shows the obtained default probabilities, CoRisk and its com-

parison with other centrality measures. Finally, Section 7 concludes with some

closing remarks.

3 Multivariate spread processes

Consider i = 1, ..., N countries which, in a first stage, have only one economic

sector. We assume that the time dynamics of the liability side of each coun-

try is expressed by the evolution of the associated interest rate, which can be

described by a linear combination of two stochastic processes: a common sys-

tematic component and an idiosyncratic factor. More formally, for each country

i = 1, . . . , N

Zit = yit − St, (3.1)

where St stands for the systematic process, while yit represents the idiosyncratic

process referred to country i; the complete process Zit describes the resulting time

evolution of interest spreads. From an economic viewpoint, the above formulation

expresses Zit as the difference between the cost of a long term debt and the cost

of liquidity.
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Both the systematic and the idiosyncratic processes can be modelled as CIR

processes (Cox et al. 1985), as follows:dSt = (a− vSt−1) d t+ b
√
St−1 dBt,

d yit = (θi1 − θi2yit−1) d t+ θi3

√
yit−1 dWt,

(3.2)

where dBt and dWt are two independent Brownian motions.

We then assume the following correlation structure:Corr[yit, y
j
t ] = ρij ,

Corr[St, y
j
t ] = γj .

(3.3)

Note that the first equation in (3.3) is consistent with the assumptions used

in the formulation of multidimensional CIR processes (see e.g. Kalogeropoulos et

al., 2011); the second one introduces an innovation in the econometrics literature,

assuming a correlation between each idiosyncratic process and the systematic

process St.

The model proposed in (3.1)-(3.3) defines a multivariate stochastic process

able: (a) to capture both the systematic and the idiosyncratic components that

may affect interest rate spread dynamics, using linear combinations of stochastic

processes; (b) to model the correlation structure of interest rate spreads across

different countries.

To exploit (b) we now derive the instantaneous covariance matrix correspond-

ing to our proposed model. First define:

P =


1 ρ12 ... ρ1N

ρ21 1 ... ρ2N

...
...

. . .
...

ρN1 ρN2 . . . 1

 , Γ =



γ1

...

γi

...

γN


, (3.4)

where each element in P is the correlation coefficient between the idiosyncratic

processes of any two countries, while each element of Γ is the correlation coef-

ficient between any idiosyncratic process and the systematic process, as defined

in (3.3). Let A be the instantaneous covariance matrix of the spread vector

Z = (Z1, . . . , ZN ). A can be shown to be as follows:

A = Φ ·ΘT , (3.5)

where each vector of the matrices Φ and ΘT is equal to:

[Φ]i =
[
b
√
S0, 1,

√
S0yi0bθ

i
3[Γ]i,

√
yi0θ

i
3

√
[P ]i

]
,
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[ΘT ]j =



b
√
S0

√
S0y

j
0bθ

j
3[Γ]j

1

√
yj0θ

j
3

√
[P ]j


.

The parameters of the proposed process can be estimated by extending results

available for univariate stochastic processes (see e.g. Iacus, 2008), and based on

the maximization of the log-likelihood function. Through the application of

the invariance principle to maximum likelihood estimators, we can compute the

covariance matrix A on which networks are based. Before that, we extend the

methodology proposed so far to the more realistic multi-sector situation.

For each country, let us consider the aggregate financial liabilities of sovereigns,

(non-financial) corporates and banks as the idiosyncratic components in (3.1).

Formally, by denoting the three economic sectors respectively with {1, 2, 3}, for

each country i = 1, . . . , N equation (3.1) becomes the following system:
Zit,1 = yit,1 − St,

Zit,2 = yit,2 − St,

Zit,3 = yit,3 − St.

(3.6)

In (3.6) the systematic component St as well as the idiosyncratic factors

yt,{1,2,3} follow a CIR process:

dSt = (a− vSt−1) d t+ b
√
St−1 dBt,

d yit,{1,2,3} = [(θ1)
i
{1,2,3} − (θ2)

i
{1,2,3}y

i
t−1,{1,2,3}] d t+ (θ3)

i
{1,2,3}

√
yit−1,{1,2,3} dWt.

(3.7)

We then assume the following correlation structure:Corr[ymt ; ynt ] = ρmn,

Corr[St; y
m
t ; ] = γm,

(3.8)

where {m,n} ∈ (V × W ), with V = {1, ..., N} denoting countries and W =

{1, 2, 3} economic sectors.

The new model in (3.6)-(3.8) defines a general multivariate stochastic pro-

cess able: (a) to capture both the systematic and the sector-specific idiosyncratic

components that may affect interest rate spread dynamics, using linear combi-

nations of stochastic processes; (b) to model the correlation structure of interest

rate spreads across different countries and different sectors. Note that the in-

stantaneous covariance matrix of the new process turns out to be the same as
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that in (3.5), albeit with a different dimensionality, being a 3N ×3N rather than

a N ×N matrix.

Once the covariance matrix A has been estimated (as previously discussed),

it can be employed to calculate correlation coefficients and, consistently, corre-

lation networks between countries and economic sectors (following Billio, 2012;

Ahelegbey et al., 2015; Giudici and Spelta, 2015). However, such correlations

can be misleading because they take into account bivariate (marginal) relation-

ships between interest spreads. For this reason we propose to employ conditional

(partial) correlations, different from bivariate ones as they are adjusted by the

presence of all the other variables in the system. Let A−1 be the inverse of the

covariance matrix, with elements amn. The partial correlation coefficient ρmnVW

between variables Zm and Zn, conditional on the remaining variables in V ×W ,

can be obtained as:

ρmnVW =
−amn√
ammann

. (3.9)

In order to better explain partial correlations and their differences with re-

spect to marginal ones, we now report a useful and interesting property. For

{m,n} ∈ (V ×W ), set S = (V ×W ) \ {m,n} and suppose to express the depen-

dence between spread measures through multiple linear models in the following

way: Zm = am +
∑

n6=m amn|SZ
n;

Zn = an +
∑

m6=n anm|SZ
m.

(3.10)

It can be shown that the partial correlation coefficient between Zm and Zn,

given all the other 3N − 2 spread measures, can be interpreted as the geometric

average between the multiple linear coefficients in (3.10):

|ρmn|S | = |ρnm|S | =
√
amn|S · anm|S . (3.11)

Note that in case of only two components (S = ∅), equation (3.10) becomes:Zm = am + amnZ
n

Zn = an + anmZ
m,

(3.12)

from which the marginal correlation coefficient ρmn can be derived as the geo-

metric average between the coefficients in (3.12):

|ρmn| = |ρnm| =
√
amn · anm.

We propose to build a correlation network based on partial correlations rather

than on marginal correlations. To achieve this aim we introduce an undirected

graph G = (P,E), with a vertex set P = V × W = {1, ..., 3N} and an edge
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set E = P × P . Such edge set is defined by binary elements emn that describe

whether pairs of vertices are (symmetrically) linked to each other (emn = 1) or

not (emn = 0), depending on whether the partial correlation coefficient between

the corresponding pair of variables is different from or equal to zero.

4 Default probabilities and CoRisk

For each node m ∈ V ×W , a sector-specific probability of default, PDm
t , can be

obtained by considering the expected dynamic of debt:

Dm
t+1 = (1− PDm

t )ey
m
t Dm

t , (4.1)

where Dm
t+1 (Dm

t ) is the total debt at time t + 1 (t). Note that the analogous

dynamic of a risk-free debt is the following:

Dm
t+1 = eStDm

t . (4.2)

If we (reasonably) assume to be in an arbitrage-free context, we can equate

(4.1) and (4.2), thus obtaining PDm
t :

PDm
t = 1− e−Zm

t . (4.3)

From (4.3), a decrease in Zmt implies a decrease in the probability of default,

consistently with the definition of the process Zmt as an interest rate spread.

The probability of default derived in (4.3) is sector-specific, as it is assumed

independent from the default probability of other institutions: in our view this

is an unrealistic assumption, since economic sectors of different countries depend

on each other, as well as the default probability of each country depends on all

its three economic sectors. We thus propose to evolve the PD into a total default

probability, TPD, able to incorporate both sector-specific and contagion com-

ponents. To ease the exposition, in this Section we will propose an economically

intuitive approach: a complete mathematical treatment is provided in Appendix

A. Let us assume to have a ”global” spread process Z̃m, expressed as a linear

function of the ”baseline” spread Zmt = −ln(1 − PDm
t ), which depends exclu-

sively on m, and of a further component which depends on the spread measures

Znt of the other nodes n 6= m:

Z̃mt = Zmt +
∑
n6=m

amn|SZ
n
t . (4.4)

Assuming that the total default probability TPD can be expressed as a func-

tion of Z̃ as in (4.3), by replacing Zmt in (4.3) with the right hand side of equation

(4.4), and by substituting the coefficients amn|S (unknown) with their geometric

averages ρmn|S (obtained from the estimated process parameters) according to
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(3.11), we derive a new expression for the probability of default, that we name

TPD:

TPDm
t = 1− (1− PDm

t ) ·
∏
n6=m

(1− PDn
t )ρmn|S . (4.5)

From (4.5), we can define the incoming contagion effect (CoRiskin) as the

TPD component that strictly depends on neighbours n 6= m:

CoRiskmin,t = 1−
∏
n6=m

(1− PDn
t )ρmn|S . (4.6)

For each agent m, CoRiskin is an increasing function of both PDn (default

probability of neighbours) and ρmn|S (partial correlations). In other words, the

worse the nodes to which m is more connected, the worse the default probability

of m itself.

By combining (4.5) with (4.6) and by assuming TPDm
t > 0 (a rather obvious

request), CoRiskin can be interpreted as the percentage variation of the survival

probability due to contagion:

CoRiskmin,t =
(1− PDm

t )− (1− TPDm
t )

1− PDm
t

. (4.7)

Economically, CoRiskin measures the change in the survival probability of

an agent m when potential contagion deriving from all other agents is included.

According to equations (4.5) and (4.7), the total default probability TPD can be

either greater or lower than PD depending on the sign of the CoRiskin measure:

more precisely, if CoRiskin > (<)0, the default probability of node m increases

(decreases) after the inclusion of contagion effects. This distinction comes from

considering partial correlations as signed numbers rather than in absolute value,

thus allowing for ”beneficial” or ”adverse” effects. As a consequence we will ob-

tain negative contagion when an institution m is disadvantaged by positive links

with its neighbours (CoRiskin > 0 and TPD > PD), while positive contagion

will occur if institution m takes advantage of negative links with its neighbours

(CoRiskin < 0 and TPD < PD).

In order to define outgoing contagion effects, we can calculate to what extent

agent m affects its neighbours. Formally, we can define CoRiskout as follows:

CoRiskmout,t = 1−
∏
n6=m

(1− PDm
t )ρnm|S = 1− (1− PDm

t )
∑

n 6=m ρnm|S . (4.8)

Note that the two definitions (4.6) and (4.8) introduce asymmetries in the

model: even if the graph is undirected and, thus, symmetric, the incoming and

outgoing contagion effects are different, since each node is associated to a different

default probability and, consequently, its contagion effect towards its neighbours

is different from the effect it receives from them.
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This distinction allows us to disjointly calculate, for each agent, its vulnera-

bility (CoRiskin) and its systemic importance (CoRiskout). If the two measures

coincide, the default probability of nodem is equal to the geometric average of the

default probabilities of its neighbours: on the contrary, if CoRiskmout > CoRiskmin
(<), the default probability of node m is greater (lower) than the geometric av-

erage of the default probabilities of its neighbours, meaning that its systemic

importance is greater (lower) than its vulnerability.

As an example, consider the graphs in Figure 1, where each node is associated

to its sector-specific PD and each pair of nodes is associated to the corresponding

partial correlation coefficient ρmn|S .
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Figure 1: CoRiskin, an illustrative example

In the first case (all positive correlations) the final CoRiskin value is 0.047,

meaning that contagion has decreased the survival probability of node 1 by 4.7%,

bringing its default probability from PD1 = 2.9% to TPD1 = 7.2% (negative

contagion). In the second example, instead, all the correlation coefficients are

negative, and the calculated CoRiskin becomes -0.049, meaning that contagion

has increased the survival probability of node 1 by 4.9% (positive contagion).

According to equation (4.5), the total TPD1 has decreased, being equal to 0.87%.

Note that in this second example the CoRiskin measure is not equal, in absolute

value, to the one obtained in the previous example: this because the exponent ρ

introduces non-linear effects in the relationship (4.6). In the last example, where

both positive and negative correlations appear, the calculated CoRiskin measure

is equal to 0.032, meaning that contagion has decreased the survival probability

of node 1 by 3.2%, reaching a total default probability TPD1 = 5.6% (overall

negative contagion).
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Figure 2: CoRiskout, an illustrative example

Figure 2 reports the same graphs as in Figure 1, but we now concentrate on

the outgoing effects in order to understand how node 1 affects its neighbours.

In the first example, the overall CoRiskout is equal to 0.040: this result is lower

with respect to the CoRiskin value because the incoming contagion is highly

affected by the large default probability of node 3. Similarly, in the second

situation the final CoRiskout is -0.095. This result is lower than the corresponding

CoRiskin because, now, the default probability of node 1 is much bigger than

the default probabilities of its neighbours: consequently, the contagion effect due

to negative correlations is amplified, meaning that a negative relation with node

1 strongly decreases the default probability of the set ne(1). In the last example

the calculated CoRiskout measure is equal to 0.015, lower than CoRiskin as in

the first example.

The total default probabilities introduced in (4.5) are defined for each eco-

nomic sector within each country. However, it is important to calculate the total

default probability of an entire country, obtained by aggregating the default

probabilities of its economic sectors. To derive such probability we assume that

a country will default if at least one of its economic sectors defaults.

Thus, denoting with A3,i, A1,i and A2,i the sets of defaults for, respectively,

the sovereign, corporate and bank sectors of country i, we are interested in

deriving P (
⋃
j∈W Aj,i|Si), where Si = {Am; ∀m ∈ V × W,m ∈ ne(i, j),m 6=

(i, j)}. It can be shown that such a probability, named TPDi
country,t, is equal to:

TPDi
country,t = 1−

3∏
j,j′=1
j′>j

(1− TPDj,i
t |Āj

′
), (4.9)
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where the three probabilities are the TPDs derived through (4.5) by considering,

respectively, all the other nodes, all the other nodes but the corporate sector of

country i, all the other nodes but the corporate and bank sectors of country i.

5 Data

We focus on eleven european countries: Austria, Belgium, Finland, France, Ger-

many and the Netherlands (core countries); Greece, Ireland, Italy, Portugal and

Spain (peripheral countries). For each country we consider three idiosyncratic

components for modeling sovereign, corporate and bank risk: (a) interest rates on

10-year maturity government bonds, (b) aggregate interest rates on bank loans

to non-financial corporates, (c) aggregate interest rates on bank deposits from

non-financial corporates and households. Concerning the common systematic

component, there are many choices for a benchmark rate: we suggest a rate that

reflects the impact of the European Central Bank monetary policy, such as the

3-months Euribor. All data are publicly available and have been selected with

monthly frequencies.

Summary statistics are shown in Tables 1 and 2. In order to better de-

scribe the country-specific, sector-specific and time-evolution components of the

resulting N = 11×3 -dimensional system of interest rate spreads, data have been

grouped in four different time windows: (a) the pre-crisis period (2003-2006), (b)

the financial crisis period (2007-2009), (c) the sovereign crisis period (2010-2012)

and (d) the post-crisis period (2013-2015). For each of them means, standard

deviations as well as correlations with Euribor interest rates are reported.

[Tables 1 and 2 here]

From Tables 1 and 2 note that interest rates on loans have the highest cor-

relation coefficients with Euribor interest rates, during all time-windows and in

almost all countries. The same correlations referred to interest rates on govern-

ment bonds vary over time: low during the pre-crisis period and higher afterwards

(with the exception of Greece). The correlations of bank interest rates with the

Euribor follow a similar pattern, being very low until 2012 in almost all countries,

and strongly positive afterwards.

The time evolution of the interest rate processes for the sovereign sector can

be observed in Figure 3.

[Figure 3 here]

Figure 3 shows that interest rates on government bonds were initially very

similar, while in 2010 they started diverging: decreasing in core countries and

increasing in peripheral countries. Greece, Ireland and Portugal present the
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highest volatility, especially during their sovereign crisis in 2010-2011, followed

by Italy and Spain and, to a lesser extent, Belgium.

The time evolution of the interest rate processes for the corporate sector can

be observed in Figure 4.

[Figure 4 here]

From Figure 4 note that interest rates on loans to non-financial corporates

differ across the main european countries. In particular, Greece and Portugal

have the highest values while Finland and Austria present the lowest ones. The

interest curves of corporates do not show substantial overlaps: they all increase

during the financial crisis of 2008 and, to a lesser extent, during the sovereign

crisis of 2011. All rates show positive correlations with the Euribor dynamics.

Overall, the scale of variation of corporate rates is much smaller than that of

sovereign rates, especially in peripheral countries.

The time evolution of the interest rate processes for the bank sector can be

observed in Figure 5.

[Figure 5 here]

Figure 5 shows an interest rate pattern substantially different with respect

to sovereigns and non-financial corporates. The highest rates occur in France,

Belgium and the Netherlands consistently through time, while the curves of the

other countries do overlap: this is especially true for peripheral countries, affected

not only by the financial crisis but also by the sovereign crisis. Overall, the scale

of variation of bank rates is slightly lower than that observed for corporates.

6 Empirical Results

The first step in model estimation consists in deriving the coefficients of the

stochastic processes in (3.2), for the two components (idiosyncratic and system-

atic) of each economic sector and country: such results are reported in Tables

3, 4 and 5. Tables 4 and 5 show that, during the two crisis periods, all the

parameters (drift and volatility) are sensibly higher in peripheral countries than

in core countries. In the post-crisis period, however, drift terms return to their

initial values (with the exception of Greece), while volatilities remain quite high.

6.1 Correlation Networks

Our aim is now to derive the correlation network models obtained by calculating

partial correlations as in (3.9), for sovereigns, corporates and banks. To achieve

this aim it is necessary to calculate, within each sector j, the 11 × 11 inverse
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correlation matrix of the spreads Zit,j for each time period t. To better inter-

pret the results, we only show the most significant correlations: in particular,

a connection between two countries will be kept or dropped on the basis of a

correlation t-tests based on α = 0.10. Moreover, for explanatory purposes we

will just show networks referred to the four time windows previously identified.

Such correlations are depicted in Figure 6: green lines stand for positive partial

correlations, while red lines indicate negative partial correlations; the ticker the

line, the stronger the connection.

[Figure 6 here]

Comparing the sovereign correlation networks in Figure 6, note that their

pattern has substantially changed over the years: in the pre-crisis period the

overall number of significant partial correlations is quite high; during the finan-

cial crisis they decrease; during the sovereign crisis they further decrease and

a ”clustering effect” that separates core and peripheral economies in two quite

distinct subgraphs emerges. Last, in the post-crisis period the partial correlation

pattern returns to the pre-crisis situation, however with a persisting clustering

effect, emphasized not only by positive within subgraph correlations, but also by

negative ones across the two subgraphs.

Bank correlation networks, similarly to sovereign ones, are quite connected in

the first two periods, and become sparser afterwards. In this case, the clustering

effect becomes evident in the last, rather than in the third period. This time

delay may also be due to the different kind of data used for banks with respect

to sovereigns: the latter are market-based data, characterized by quick reactions

to the economic perspectives of a country; the former, instead, depend upon

banks’ decisions and are characterized by a degree of viscosity with respect to

the external environment.

By analyzing the corporate correlation networks in Figure 6, a substantial

change over time in the partial correlation pattern emerges again, further under-

lining the importance of the dynamic perspective. During the pre-crisis period

the overall number of significant correlations is quite high, similarly to sovereign

and bank ones. During the financial crisis such number substantially decreases;

during the sovereign crisis significant correlations increase again, and they drop

in the last period, characterized by low growth and close-to-zero Euribor inter-

est rates. Differently from what observed in the other two economic sectors, a

clustering effect between core and peripheral countries is not evident: a possible

explanation is that corporate interest rates are highly and constantly correlated

with Euribor rates across time and, thus, clustering effects become less signif-

icant while the systematic component, affected by monetary policies, becomes

the most important risk driver.
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6.2 Default probabilities and contagion

Having estimated all the parameters, as well as partial correlations, we are now

able to calculate the sector-specific and time-dependent probabilities of default

of each sovereign (PDi
t,1), corporate (PDi

t,2) and bank (PDi
t,3) sector in each

country i, based respectively on the spread measures Zit,1, Z
i
t,2 and Zit,3 according

to equation (4.3). Using such PDs and the estimated partial correlations, we

can thus calculate the total default probability of each economic sector in each

country TPDi
t,{1,2,3} as in (4.5) and, by comparing them with the sector specific

default probabilities, we can obtain the CoRisk measures.

Summary statistics of CoRiskin during the four different time windows are

shown in Tables 6 and 7. Their corresponding time evolutions, together with

default probabilities PD and TPD, are shown in Figure 7.

[Tables 6 and 7, Figure 7 here]

Let us first consider the results referred to the sovereign sector, obtained by

jointly reading Tables 6 and 7 together with Figure 7. By looking at the single

sector-specific PD (top graphs), it is clear that Greece presents the most critical

situation, with the highest PD values. Portugal has similar, but lower results.

Ireland presents an anticipated increase in its default probability because of its

deep sovereign crisis in 2011, but in the following years it starts performing quite

well until reaching very low PD values in 2015. Italy and Spain show similar

intermediate values, while core countries behave quite similarly to each other,

with the lowest PDs across time.

The CoRiskin pattern (middle graphs) can be understood by looking at the

networks in Figure 6: countries with high positive correlations with peripheral

economies, characterized by high PDs, have a high CoRiskin: this is the case,

for example, of France and Belgium in the second period, strongly connected,

respectively, to Italy and Portugal, and to Italy and Spain. Similarly, Spain

presents a high CoRiskin during the sovereign crisis period, due to its strong

positive link with Ireland, a particularly troubled country in such years. On

the other hand, countries which are negatively or not connected with peripheral

ones (such as, for instance, Germany in the second period and Finland and

Austria in the latest years) have close to zero or negative CoRiskin measures.

The clustering effect observed in Figure 6 in recent times implies that peripheral

countries have been negatively affected by positive correlations with each other

(negative contagion: CoRiskin > 0), while core countries have taken advantage of

negative correlations with peripheral economies (positive contagion: CoRiskin <

0), thus decreasing their own default probability. This result can be explained

thinking at capital flows: when a country i is facing a crisis period, investors

tend to shift their portfolio towards ”safer” places in order to reduce risk, and

such places are the countries negatively related to i, which, therefore, show an
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improvement in their survival probability. This mechanism justifies the difference

between positive and negative contagion derived in Section 4.

Moving to the TPD time-evolution, it appears to be a mix between the

sector-specific PD and the CoRiskin contribution, with the former prevailing.

In peripheral economies, characterized by high sector-specific PDs, the CoRiskin

contribution should be very low; however, the rise of two distinct clusters origi-

nates a sort of ”diabolic loop”, by which peripheral countries become positively

connected between each other and negatively connected to core ones. For this

reason their total default probability TPD is strongly influenced not only by its

corresponding sector-specific PD, but also by high CoRiskin values. Following

the same (but reversed) mechanism, core economies preserve low TPD even af-

ter the inclusion of contagion effects: the only one exception is France, which

presents an extremely high CoRiskin during the financial crisis due to a posi-

tive connection with Italy. Germany lies in an intermediate situation, with its

CoRiskin growing in the recent years, along with positive connections with the

periphery, in the light of its increasing leading role in the Euro area.

The results referred to corporates show sector-specific PDs less volatile than

sovereign ones, both across countries and time. They all peak during the financial

crisis and decrease afterwards, remaining almost constant during the following

years. In recent times, the ranking of countries reflects what has been observed

for sovereign risk, with Greece presenting much higher values than all the other

countries, and core economies having the lowest ones. This means that, in the

Euro area, sovereign risk has become the driving risk source. The CoRiskin

pattern shows that almost all countries suffered contagion effects during the fi-

nancial crisis and, to a lesser extent, during the sovereign crisis, thus highlighting

an overall negative contagion across corporates. More precisely, Italy presents

the highest CoRiskin values because of its strong positive relationships with Por-

tugal and Spain, as shown in Figure 6. Differently from what has been observed

for sovereigns, CoRiskin is the prevailing effect in the calculation of the total

default probability for the corporate sector (with the exception of Germany in

the last two periods, because of its very low sector-specific PD values): such a

conclusion is supported by Figure 6, which shows that partial correlations are

much higher both in number and value with respect to the sovereign sector, and

that a clustering effect is not evident.

The results for the banks reveal that the sector-specific PDs of all coun-

tries have only been influenced by the financial crisis. Consistently with Figure

5, France, Belgium and the Netherlands present the highest levels, because of

their high values of interest rates on deposits. The CoRiskin pattern shows both

negative and positive contagion effects during the second time-period, with the

former regarding core countries and the latter peripheral ones. However, from

2010-2012 (when two distinct clusters start emerging, as for the sovereign sec-
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tor) CoRiskin starts increasing both in core and peripheral economies because

of highly positive partial correlations within each cluster; this effect is further

amplified in peripheral countries because of their higher sector-specific default

probabilities, thus generating again the self-reinforcing and ”diabolic” loop pre-

viously observed. Similarly to corporates, CoRiskin is the prevailing component

in the composition of the total default probability of banks, both across time and

countries.

6.3 From economic sectors to countries

In order to understand to what extent a whole country is influenced by the

others, the aggregate total default probability proposed in (4.9) can be employed

to summarize contagion effects into a unique default probability at the country

level. Such aggregate TPDs for the euro area countries are shown in Figure 8.

[Figure 8 here]

From Figure 8 two main considerations emerge. First, the financial crisis has

had a more homogenous impact across countries than the sovereign one: all the

aggregated TPDs strongly increased during 2008, while in the following time-

window a clear distinction between peripheral and core countries appears, with

the former having higher values than the latter. Two notable exceptions to the

general pattern are: (a) France, which presents high values mainly because of its

positive correlations with peripheral countries during both the financial and the

sovereign crisis; (b) Ireland, characterized by a deep sovereign and bank crisis in

2011 (worsened by positive links with peripheral countries), followed by strong

reforms and, recently, good economic results (increased by positive relations with

core economies). Second, the pre- and post- crisis periods appear to be substan-

tially different: during the pre-crisis years, in fact, default probabilities were

almost constant and stable across time, and very homogenous across countries;

but after the sovereign crisis the situation has become more heterogenous, with

high volatilities in all countries and a clear distinction between peripheral and

core economies, with Ireland joining the latter. This effect, consistently with

Figure 7, means that the sovereign crisis has had the strongest impact on the

Euro area, an impact that still persists through diverging clusters.

The total PD of a country is a function of the total default probabilities

of its three economic sectors which, in turn, are functions of two contributions:

their sector-specific PD and the CoRiskin measure. Moreover, previous results

confirm that the hypothesis of Corollary A.1.7 (see Appendix A) are verified. We

are thus allowed to disentangle the final default probability of a country into six

percentage components. The normalized results are shown in Figure 9.

[Figure 9 here]
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From Figure 9 note that the sovereign contribution in peripheral countries

is larger than in core ones across time; in the latter, the main component of

sovereign risk is due to contagion effects, while in the former the sector-specific

PD component is higher. In almost all countries the corporate contribution is

stronger during ”normal” times, such as before the financial crisis and in the

latest period, depending on sector-specific PDs in peripheral economies and on

contagion effects in core economies. Last, core economies suffered a substan-

tial improvement in contagion effects for the bank sector during the sovereign

crisis through their exposition to peripheral banks, while peripheral economies

witnessed an increase in their sector-specific bank default probabilities.

Overall, combining cross-sectional and time comparisons, the distribution of

risk in its six components looks quite homogenous across countries before the

financial crisis while, recently, the situation has not returned back to equilibrium:

strong contagion risks persist in core economies, while sector-specific default

probabilities are still high, and worsened by intra-clustering effects, in peripheral

countries.

6.4 Vulnerability vs Systemic Importance

While CoRiskin incorporates incoming effects and thus measures the vulnera-

bility of each economic sector in a country, CoRiskout can be applied to obtain

an estimation of the systemic importance of each economic sector in each coun-

try. A comparison between vulnerability (CoRiskin) and systemic importance

(CoRiskout) across time and countries is shown in Figure (10).

[Figure 10 here]

By comparing CoRiskout and CoRiskin contributions for the sovereign sector,

different conclusions can be deduced. First, during the pre-crisis and the financial

crisis periods the two measures look very similar, meaning that sector-specific

default probabilities were homogenous across countries. Important differences

start emerging during the sovereign crisis period: in such years Greece is clearly

more an exporter rather than an importer of risk, while the situation is reversed

for Portugal and Spain. In most recent years, all peripheral countries have the

highest, even if decreasing, CoRiskout contributions, since their sector-specific

PD is significantly higher than in core economies. It is interesting to observe

that there are not negative CoRiskout measures for the sovereign sector, meaning

that all Euro countries contribute to increase the default probability of their

neighbours.

The incoming and outgoing contributions for the corporate sector emphasize,

once again, the difference between core and peripheral countries, with the latter

characterized by higher CoRiskout and the former by higher CoRiskin. Simi-

larly to sovereigns, the two CoRisk contributions are very close during the first
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two time-periods, while they start diverging afterwards. Similar results can be

observed for the bank sector.

Overall, peripheral (core) countries appear to be more exporters (importers)

rather than importers (exporters) of systemic risk, especially after the sovereign

crisis. This result can be once more explained by the emerging of clustering

effects in the third period, and it is a further confirmation of the persisting, and

difficult to reverse consequences of the sovereign crisis on Eurozone countries.

6.5 CoRisk as a new centrality measure

We have considered both the incoming and outgoing CoRisk as risk measures,

able to calculate the vulnerability or the systemic importance of an economic

sector in different countries and across time. However, CoRisk has been de-

rived employing network features, and can thus be applied in more general

frameworks. More precisely, let us consider an undirected graph. Differently

from other centrality measures, we can assign two weights to our network: (a)

ρmn ∈ [−1, 1], which measures the weight of the link between each pair of nodes;

(b) PDm ∈ [0, 1], which measures the dimension of each node. We can thus

derive two centrality measures, both based on these two weights but different for

the meaning they attribute to centrality:

Incoming centrality: how much a node is affected by its neighbours, according

to (a) the number and weight of links, and (b) the importance (dimension) of

neighbours.

Outgoing centrality: how much a node affects its neighbours, according to (a)

the number and weight of links, and (b) the importance (dimension) of the node

itself.

In order to better understand the meaning of these new network centrality

definitions, we have decided to compare them to other two measures, commonly

used especially in the systemic risk field: the eigenvector centrality (see e.g.

Furfine, 2003; Billio et al., 2012) and the weighted degree, calculated as the

sum of all partial correlations (see e.g. Giudici and Spelta, 2015). We have

applied them to our data, and the corresponding results are shown in Tables

8 and 9 (centrality measures) and in Tables10 and 11 (centrality ranks). In

order to summarize the comparison between rankings, the Spearman correlation

coefficient has been calculated: the results are shown in Table 12.

[Table 12 here]

Table 12 reveals that, overall, both CoRiskin and CoRiskout orderings are

quite similar to the one obtained with the weighted degree of centrality. As
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previously underlined, the difference between the two lies in the inclusion of two

rather than one weight in CoRisk: more precisely, CoRiskin and CoRiskout

depend on both partial correlations and, respectively, the default probabilities

(or, more generally, the dimensions) of neighbours or the default probability

(dimension) of the node itself.

On the other hand, eigenvector centrality measures the importance of each

node in the graph by looking at its relations with other central nodes, so that a

node becomes much more important if it is connected to important ones. This

mechanism, applied without considering the impact of each node on the basis

of its dimension, amplifies the ”error”, or the distance between CoRisk and the

eigenvector centrality measure. This effect is particularly evident during crisis

periods, for both incoming and outgoing effects.

7 Conclusions

In this work we have proposed a new systemic risk measurement model, based

on multivariate stochastic processes, correlation networks and default probabil-

ities. The model has been applied to the economies of the European monetary

union in the recent time period. For each country we have considered three eco-

nomic sectors (sovereigns, corporates and banks), and we have modelled each of

them as a linear combination of two stochastic processes: a country-specific id-

iosyncratic component and a common systematic factor. We have built a partial

correlation network within each sector, thus deriving a statistical representation

of the transmission mechanisms of systemic risk that correctly takes into ac-

count interdependence effects. We have then derived the default probability of

each economic sector in each country, both unconditionally and conditionally on

the network structure: the comparison between them allows the definition of a

novel risk indicator, CoRisk, that explicitly measures the contagion effect on the

probability of default of each economic sector.

From an applied viewpoint, our proposed methodology seems quite effective

and efficient, particularly when compared to alternative network based measures,

such as the weighted degree and the eigenvector centrality. Our main economic

findings can be summarized according to three dimensions: (a) the economic

sector dimension, (b) the country dimension and (c) the time dimension at the

aggregate country level.

Concerning (a), the corporate sector is strongly influenced by the systematic

component, and this explains why it suffers monetary policy changes more than

sovereigns and banks. On the other hand, the sovereign and bank sectors deeply

suffered, respectively, the sovereign and the financial crisis. For both of them,

the sovereign crisis has generated two distinct clusters, characterized by positive

within and negative cross correlations, clearly separating peripheral and core

23



economies. Such separation creates vicious circles within each cluster, further

alienating troubled and strong economies. In a situation in which core economies

benefit from positive contagion while peripheral countries suffer negative conta-

gion, risk propagation does not act as a mean for balancing inequalities across

countries; on the contrary, it weakens the weakest and strengthens the strongest

countries.

Concerning (b), core countries mostly behave as importers, rather than ex-

porters of system risk. As a consequence, core economies are mostly affected

by contagion risk and are rather vulnerable than systemic important; peripheral

countries, instead, strongly suffer high sector-specific default probabilities and

high contagion deriving from cluster effects, so they are both vulnerable and

systemic important.

Concerning (c) the sovereign crisis has had a larger impact on systemic risk

with respect to the financial crisis. A possible explanation consists in differ-

ent ways peripheral and core economies reacted to the financial crisis: peripheral

countries, with high public debts, had little fiscal space to improve balance sheets

and, therefore, the financial crisis triggered their imbalances to emerge in the sub-

sequent sovereign crisis. The time sequence of these two events has determined

an irreversible phase change, leading to a new non-stable equilibrium, where in-

stability derives from peripheral-countries trajectories diverging from core ones.
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A Appendix

A.1 TPD and CoRisk derivation

Since we want to consider the default probability of each economic sector as a

function of both its sector-specific PD and contagion effects coming from neigh-

bours, the first step consists in deriving the functional form for TPDm
t as in

(4.5).

Lemma A.1.1. Given an undirected graph G = (P,E) with vertex set P =

V ×W and edge set E = P ×P , given the weights PDm
t of each node m ∈ V ×W

at time t and a matrix Pt of partial correlation coefficients, ρmn|S, measuring the

strength of each edge e ∈ E at time t; the total default probability of each node m

can be expressed as a function if its weight PDm
t , its neighbours’ weights PDn

t

(n 6= m) and their partial correlations ρmn|S as follows:

TPDm
t = 1− (1− PDm

t ) ·
∏
n 6=m

(1− PDn
t )ρmn|S . (A.1)

Proof. Let m be the node for which we want to measure the contagion effect,

and n be any other node in the graph G which may have an effect on m because

of their partial correlation ρmn|S . According to (4.3), let us define the functional

form f(xm, t) = 1 − e−xmt , so that PDn
t = f(Zn, t). We can now introduce a

random variable Z̃mt such that TPDm
t = f(Z̃m, t). Without loss of generality,

the linear combination in (3.10) can be rewritten by substituting Zm with Z̃mt =

f−1(TPDm, t) and Zn with f−1(PDn, t). Furthermore, we can consider the

sector-specific contribution am = f−1(PDm, t) as a fixed effect (baseline Zm),

and we can approximate the regression coefficients amn|S with their geometric

average ρmn|S as a consequence of the partial correlation property (3.11). Doing

so, we obtain the following system:
Z̃mt = Zmt +

∑
n6=m ρmn|SZ

n
t

TPDm
t = 1− e−Z̃m

t

Zmt = − ln(1− PDm
t ),

and, consequently,

TPDm
t = 1− e−(Z

m
t +

∑
n6=m ρmn|SZ

n
t ) = 1− (1− PDm

t ) ·
∏
n 6=m

(1− PDn
t )ρmn|S .

After having derived the total default probability associated to each economic

sector in each country, we are now interested in extracting the contagion com-

ponent from it. More precisely, we want to identify a variable able to measure
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to what extent the total default probability of node m depends on all the other

nodes n 6= m. This variable, named incoming contagion risk (CoRiskmin,t), needs

to have some properties: (a) it has to depend on the neighbours n 6= m and not

on m itself; (b) it has to be related to TPDm since it is part of it; (c) it has to

measure contagion risk and, therefore, it has to be an increasing function of both

PDn and ρmn|S . As a consequence, we propose the following.

Definition A.1.2. Given the assumptions in Lemma A.1.1 and ∀m ∈ V ×W ,

the incoming contagion risk, CoRiskmin,t, is defined as the TPDm component

which measures to what extent the default probabilities of the other nodes are

transmitted to node m:

CoRiskmin,t = 1−
∏
n6=m

(1− PDn
t )ρmn|S . (A.2)

The following Lemma derives the relationship between incoming contagion

risk and the total default probability.

Lemma A.1.3. The incoming contagion risk, CoRiskmin,t, can be interpreted as

the percentage variation in the survival probability of node m due to contagion

effects:

CoRiskmin,t =
(1− PDm

t )− (1− TPDm
t )

1− PDm
t

. (A.3)

Proof. From (A.2) the following can be derived:

∏
n6=m

(1− PDn
t )ρmn|S = 1− CoRiskmin,t.

By substituting it into (A.1) the result is

TPDm
t = 1− (1− PDm

t ) · (1− CoRiskmin,t),

and, after having rearranged terms, equation (A.3) can be obtained and the

Lemma is proven.

Similarly to what has been proposed for measuring incoming contagion effects,

we now focus on outgoing contagion: the objective is to jointly estimate not only

to what extent node m is affected by, but also affects the other nodes in the

network. For this reason we define outgoing contagion as follows.

Definition A.1.4. Given the assumptions in Lemma A.1.1 and ∀m ∈ V ×W ,

the outgoing contagion risk, CoRiskmout,t, measures to what extent the default

probability of node m is transmitted to the other nodes n 6= m:

CoRiskmout,t = 1−
∏
n 6=m

(1− PDm
t )ρnm|S = 1− (1− PDm

t )
∑

n 6=m ρnm|S . (A.4)
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Incoming and outgoing contagion risks, as well as total default probabilities,

have been derived for each economic sector, without considering correlations

between different economic sectors of the same country. Our aim is to build a

total default probability, aggregated over different sectors and able to measure

the total default probability of an entire country. Since it has to be based on

contagion risk, sector-specific risk and intra-country correlations, the following

can be shown.

Lemma A.1.5. Given the sets of default events for the corporate (A1,i
t ), bank

(A2,i
t ) and sovereign (A3,i

t ) sector for each country i at time t, and given the

system set Sit = {Amt ;∀m ∈ V ×W,m ∈ ne(i, j),m 6= (i, j)}, the total default

probability aggregated at the country level is:

TPDi
country,t = 1−

3∏
j,j′=1
j′>j

(1− TPDj,i
t |Āj

′
), (A.5)

where the three probabilities TPDj,i
t are calculated through (A.1) conditional on,

respectively, all the other nodes, all the other nodes but the corporate sector of

the same country i, all the other nodes but the corporate and bank sectors of the

same country i.

Proof. First, the TPDs of a sector can be treated as conditional probabilities on

default events of other sectors. Second, in order to consider correlations within

different economic sectors belonging to the same country, we assume that a coun-

try will default if at least one of its economic sectors is in default. By combining

these two issues, our objective function becomes the following probability:

Pr(A1,i
t ∪A

2,i
t ∪A

3,i
t |Sit) = 1− Pr(Ā1,i

t ∩ Ā
2,i
t ∩ Ā

3,i
t |Sit). (A.6)

By exploiting conditional probability definition, the following holds:

Pr(Ā1,i
t ∩ Ā

2,i
t ∩ Ā

3,i
t |Sit) = Pr(Ā1,i

t ∩ Ā
2,i
t |Ā

3,i
t , S

i
t) · Pr(Ā

3,i
t |Sit) =

= Pr(Ā1,i
t |Ā

2,i
t , Ā

3,i
t , S

i
t) · Pr(Ā

2,i
t |Ā

3,i
t , S

i
t) · Pr(Ā

3,i
t |Sit).

Recalling that Ai identifies defaults and Āi is its complementary set, (A.6) can

be rewritten as follows:

TPDi
country = Pr(A1,i

t ∪A
2,i
t ∪A

3,i
t |Si

t) =

= 1− [(1− Pr(A1,i
t |Ā

2,i
t , Ā3,i

t , Si
t)) · (1− Pr(A

2,i
t |Ā

3,i
t , Si

t)) · (1− Pr(A
3,i
t |Si

t))],

(A.7)

where the conditional default probabilities can be substituted with the total

default probabilities TPDj,i
t which are, by definition, conditional on the system

Si.
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Lemma A.1.6. The total survival probability aggregated at the country level,

1 − TPDi
country,t, can be disentangled in its components, according to the refer-

ence economic sector j and to the source of risk (sector-specific or deriving from

contagion), as follows:

ln(1− TPDi
country,t) =

3∑
j=1

ln(1− PDj,i
t ) +

3∑
j,j′=1
j′>j

ln(1− CoRiskj,it |Āj
′
) (A.8)

Proof. Lemma A.1.3 and Lemma A.1.5 provide the following system:

TPD
j,i
t = 1− (1− PDj,i

t ) · (1− CoRiskj,iin,t),

TPDi
country,t = 1− [1− (TPD1,i

t |Ā
2,i
t , Ā

3,i
t , S

i
t)] · [1− (TPD2,i

t |Ā
3,i
t , S

i
t)] · [1− TPD

3,i
t |Sit)],

(A.9)

Remembering that PDj,i
t are sector-specific default probabilities and are thus

independent from other sectors or countries, the solution of the system is:

1− TPDi
country,t =(1− PD1,i

t )(1− CoRisk1,iin,t|Ā
2,i
t , Ā

3,i
t , S

i
t)·

· (1− PD2,i
t )(1− CoRisk2,iin,t|Ā

3,i
t , S

i
t) · (1− PD

3,i
t )(1− CoRisk3,iin,t).

(A.10)

By applying a logarithmic transformation the result is:

ln(1− TPDi
country,t) = ln(1− PD1,i

t ) + ln(1− PD2,i
t ) + ln(1− PD3,i

t )+

+ ln(1− CoRisk1,iin,t|Ā
2,i
t , Ā

3,i
t , S

i
t) + ln(1− CoRisk2,iin,t|Ā

3,i
t , S

i
t)+

+ ln(1− CoRisk3,iin,t),
(A.11)

and the Lemma is proven.

Corollary A.1.7. If a country i is not in default and if |CoRiski,jt | < 1, the

total default probability aggregated at the country level, TPDi
country,t, can be dis-

entangled in its components, according to the reference economic sector j and to

the source of risk (sector-specific or deriving from contagion), as follows:

TPDi
country,t ≈

3∑
j=1

PDj,i
t +

3∑
j,j′=1
j′>j

(CoRiskj,it |Āj
′
) (A.12)
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Proof. The result can be directly derived by applying a first-order Taylor expan-

sion to the logarithmic function in (A.8). Since, by definition, default probabili-

ties have always values in [0,1], the following constraints must be added in order

to approximate logarithms with linear functions:
TPDi

country,t 6= 1,

PDj,i
t 6= 1,

|CoRiskj,it | < 1 ∀t,∀i ∈ V,∀j ∈W.

(A.13)

Remark: Consistently with the application of this paper, Lemma A.1.5, A.1.6

and Corollary A.1.7 have been proposed for a system composed by N countries

and 3 economic sectors. However, they can be easily generalized for a N ×M
system, with economic sectors j ∈W = {1, ...,M}.

A.2 CoRisk properties

From a mathematical viewpoint, CoRisk (both in and out) is a non-linear and

asymmetric function of partial correlations and default probabilities. Remem-

bering that ρmn|S ∈ [−1, 1] and PD ∈ [0, 1], CoRisk is a function f : <2 → <
and, in particular, CoRisk = f(x, y) : [−1, 1]× [0, 1]→ (−∞, 1].

In order to better interpret the CoRisk measure, it is important to study its

limit conditions. More precisely, CoRiskin is equal to zero when, one of the two

following conditions holds:PDn = 0, ∀n ∈ ne(m);

ρmn|S = 0, ∀n 6= m.
(A.14)

This is consistent with the definition of CoRiskin, meaning that the contribu-

tion to the default probability of a country m that derives from contagion effects

is null (a) if all its neighbours have zero default probability, or (b) if country

m is not partially related to any other country. Secondly, CoRiskin reaches its

highest value 1 if ∃ n ∈ ne(m) s.t. PDn = 1, meaning that the highest contribu-

tion to the vulnerability of node m occurs when at least one of the other nodes

n is in default. Finally, it is interesting to observe that CoRiskin is negative

(the so-called positive contagion) when negative partial correlations prevail: in

particular, CoRiskin → −∞ if ∃ n ∈ ne(m) s.t. the two following conditions

simultaneously hold: PDn → 1,

ρmn|S → −1.
(A.15)
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Similarly, the systemic importance of node m is null (CoRiskmout = 0) when

m is not connected to any node or when its sector-specific default probability

is equal to zero. Under the hypothesis that
∑

n∈ne(m) ρnm|S 6= 0, CoRiskmout
reaches its maximum point when PDm = 1, meaning that the highest systemic

importance of node m occurs when m itself is in default and is not an isolated

point. On the other hand, when negative correlations prevail node m positively

affects its neighbours, overall decreasing their default probability.
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B Tables and Figures

Table 1: Interest rates: pre-crisis and financial-crisis periods

Pre-crisis Period

yt,1 (Sov, %) yt,2 (Corp, %) yt,3 (Bank, %)

Country Mean SD Cor-Eur Mean SD Cor-Eur Mean SD Cor-Eur

Aus 3.866 0.368 -0.033 4.096 0.289 0.371 3.248 0.189 -0.463

Bel 3.894 0.366 -0.041 4.525 0.225 0.171 4.117 0.251 -0.415

Fin 3.845 0.381 0.009 3.640 0.312 0.791 2.664 0.225 0.202

Fra 3.859 0.352 -0.020 4.351 0.159 0.399 3.669 0.102 -0.389

Ger 3.806 0.352 0.008 4.982 0.189 -0.065 3.142 0.274 -0.540

Gre 4.045 0.343 0.109 5.659 0.264 0.880 0.402 0.117 0.606

Ire 3.826 0.378 -0.002 4.675 0.372 0.634 2.564 0.202 0.806

Ita 4.027 0.349 0.096 4.538 0.307 0.654 3.131 0.258 0.140

Net 3.843 0.362 -0.015 4.693 0.207 0.272 3.971 0.269 -0.074

Por 3.919 0.358 0.071 4.548 0.321 0.929 3.033 0.252 0.301

Spa 3.850 0.362 -0.019 3.619 0.324 0.780 2.487 0.174 0.144

Financial-crisis Period

yt,1 (Sov, %) yt,2 (Corp, %) yt,3 (Bank, %)

Country Mean SD Cor-Eur Mean SD Cor-Eur Mean SD Cor-Eur

Aus 4.198 0.298 0.752 4.531 0.943 0.967 3.352 0.179 0.383

Bel 4.216 0.322 0.834 4.754 0.671 0.986 4.009 0.156 0.427

Fin 4.107 0.350 0.847 4.378 1.103 0.980 2.968 0.355 0.838

Fra 4.063 0.370 0.852 4.710 0.587 0.956 3.565 0.059 0.353

Ger 3.808 0.502 0.840 4.961 0.579 0.986 2.688 0.047 0.726

Gre 4.826 0.437 -0.417 6.326 0.777 0.972 1.386 0.523 -0.175

Ire 4.686 0.481 -0.668 5.321 1.274 0.990 2.427 0.457 0.748

Ita 4.494 0.268 0.644 5.208 1.062 0.968 3.182 0.533 0.972

Net 4.067 0.352 0.846 4.751 0.797 0.994 3.758 0.053 0.153

Por 4.385 0.292 0.605 5.416 1.031 0.949 3.058 0.407 0.930

Spa 4.218 0.278 0.756 4.873 0.789 0.904 2.717 0.234 0.528

Notes: summary statistics for interest rates on government bonds (yit,1), interest rates on

loans to non-financial corporates (yit,2) and interest rates on deposits to families and non-

financial corporates (yit,3) during the pre-crisis period (2003-2006) and the financial-crisis

period (2007-2009), for 11 Eurozone countries. Means, standard deviations and correlations

with Euribor interest rates have been reported.
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Table 2: Interest rates: sovereign-crisis and post-crisis periods

Sovereign-crisis Period

yt,1 (Sov, %) yt,2 (Corp, %) yt,3 (Bank, %)

Country Mean SD Cor-Eur Mean SD Cor-Eur Mean SD Cor-Eur

Aus 2.972 0.587 0.586 2.845 0.232 0.934 2.297 0.104 0.256

Bel 3.565 0.660 0.877 3.460 0.169 0.920 3.182 0.177 -0.136

Fin 2.634 0.642 0.499 2.450 0.269 0.971 2.138 0.129 -0.232

Fra 2.992 0.482 0.618 3.318 0.144 0.823 3.150 0.080 0.023

Ger 2.282 0.697 0.383 3.837 0.191 0.933 2.564 0.095 0.500

Gre 15.780 6.526 0.011 5.649 0.553 0.313 2.491 0.312 -0.265

Ire 7.171 2.136 0.832 3.323 0.281 0.869 1.939 0.399 -0.182

Ita 4.984 0.891 0.305 3.505 0.332 0.221 2.784 0.441 -0.470

Net 2.638 0.622 0.469 3.436 0.192 0.991 3.801 0.139 0.026

Por 8.728 2.953 0.426 4.264 0.676 0.203 2.511 0.456 -0.172

Spa 5.179 0.815 -0.008 3.532 0.260 0.404 2.486 0.282 0.051

Post-crisis Period

yt,1 (Sov, %) yt,2 (Corp, %) yt,3 (Bank, %)

Country Mean SD Cor-Eur Mean SD Cor-Eur Mean SD Cor-Eur

Aus 1.430 0.608 0.829 2.323 0.097 0.969 1.681 0.206 0.837

Bel 1.676 0.740 0.854 2.851 0.190 0.950 2.697 0.222 0.847

Fin 1.357 0.564 0.864 1.870 0.110 0.964 1.587 0.330 0.786

Fra 1.589 0.650 0.856 2.725 0.194 0.856 2.864 0.124 0.835

Ger 1.091 0.521 0.857 3.085 0.204 0.911 2.015 0.192 0.833

Gre 8.943 1.881 -0.293 5.442 0.366 0.921 2.161 0.971 0.891

Ire 2.485 1.158 0.816 3.095 0.071 -0.496 1.892 0.280 0.630

Ita 3.014 1.133 0.801 3.511 0.237 0.947 2.896 0.368 0.578

Net 1.387 0.612 0.850 2.908 0.174 0.953 3.560 0.170 0.820

Por 4.205 1.708 0.718 4.108 0.338 0.919 2.730 0.434 0.952

Spa 3.045 1.266 0.728 3.129 0.360 0.935 2.258 0.348 0.800

Notes: summary statistics for interest rates on government bonds (yit,1), interest rates on

loans to non-financial corporates (yit,2) and interest rates on deposits to families and non-

financial corporates (yit,3) during the sovereign-crisis period (2010-2012) and the post-crisis

period (2013-2015), for 11 Eurozone countries. Means, standard deviations and correlations

with Euribor interest rates have been reported.
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Table 3: Estimated parameters for the systematic process

a v b

2003-2006 0.014 0.001 0.056

2007-2009 0.899 0.355 0.569

2010-2012 0.405 0.262 0.149

2013-2015 0.008 0.002 0.090

Notes: estimated parameters of the systematic process St (3-months Euribor), for the pre-

crisis (2003-2006), financial-crisis (2007-2009), sovereign-crisis (2010-2012) and post-crisis

(2013-2015) periods.
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Table 4: Estimated parameters for the idiosyncratic processes: pre-crisis and financial-

crisis periods

Pre-crisis Period

yt,1 (Sov) yt,2 (Corp) yt,3 (Bank)

Country (θ1)1 (θ2)1 (θ3)1 (θ1)2 (θ2)2 (θ3)2 (θ1)3 (θ2)3 (θ3)3

Aus 0.319 0.085 0.073 0.365 0.092 0.029 0.101 0.035 0.009

Bel 0.351 0.093 0.075 0.481 0.108 0.034 0.143 0.039 0.015

Fin 0.348 0.093 0.079 0.053 0.014 0.032 0.237 0.093 0.018

Fra 0.388 0.103 0.077 0.828 0.191 0.041 0.998 0.285 0.033

Ger 0.390 0.105 0.079 0.305 0.063 0.012 0.173 0.065 0.021

Gre 0.433 0.109 0.076 0.006 0.001 0.028 0.012 0.001 0.035

Ire 0.333 0.090 0.077 0.190 0.041 0.036 0.011 0.001 0.042

Ita 0.392 0.099 0.074 0.252 0.057 0.030 0.075 0.041 0.039

Net 0.379 0.101 0.080 0.366 0.079 0.018 0.500 0.075 0.032

Por 0.374 0.097 0.076 0.004 0.001 0.035 0.728 0.248 0.034

Spa 0.361 0.096 0.076 0.056 0.015 0.032 0.033 0.015 0.030

Financial-crisis Period

yt,1 (Sov) yt,2 (Corp) yt,3 (Bank)

Country (θ1)1 (θ2)1 (θ3)1 (θ1)2 (θ2)2 (θ3)2 (θ1)3 (θ2)3 (θ3)3

Aus 0.448 0.110 0.083 1.500 0.342 0.001 0.069 0.021 0.027

Bel 0.333 0.082 0.080 1.497 0.324 0.001 0.070 0.019 0.025

Fin 0.235 0.061 0.081 1.487 0.356 0.001 1.507 0.514 0.001

Fra 0.238 0.062 0.081 1.500 0.216 0.001 0.522 0.022 0.515

Ger 0.145 0.045 0.093 1.243 0.319 0.001 0.401 0.012 0.523

Gre 0.760 0.150 0.108 1.518 0.320 0.002 1.096 0.022 1.480

Ire 0.755 0.157 0.109 1.494 0.318 0.001 0.023 0.009 0.906

Ita 0.635 0.143 0.074 1.507 0.347 0.001 0.001 0.011 0.568

Net 0.231 0.061 0.080 1.483 0.351 0.001 0.001 0.006 0.620

Por 0.796 0.183 0.091 1.507 0.288 0.001 1.497 0.099 0.001

Spa 0.708 0.169 0.083 1.521 0.311 0.001 0.033 0.005 0.756

Notes: estimated parameters of the idiosyncratic processes for sovereigns ymt,1 (interest rates

on 10-years maturity government bonds), corporates ymt,2 (interest rates on loans to non-

financial corporates) and banks ymt,3 (interest rates on deposits), during the pre-crisis period

(2003-2006) and the financial-crisis period (2007-2009).
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Table 5: Estimated parameters for the idiosyncratic processes: sovereign-crisis and

post-crisis periods

Sovereign-crisis Period

yt,1 (Sov) yt,2 (Corp) yt,3 (Bank)

Country (θ1)1 (θ2)1 (θ3)1 (θ1)2 (θ2)2 (θ3)2 (θ1)3 (θ2)3 (θ3)3

Aus 1.507 0.529 0.001 0.592 0.126 0.060 1.487 0.670 0.001

Bel 1.492 0.435 0.001 0.349 0.106 0.034 0.356 0.118 0.012

Fin 0.030 0.032 0.112 0.232 0.106 0.047 0.099 0.047 0.025

Fra 0.073 0.039 0.115 0.691 0.073 0.345 1.271 0.406 0.037

Ger 0.040 0.042 0.121 0.150 0.045 0.023 0.001 0.003 0.021

Gre 1.835 0.102 0.593 0.362 0.058 0.046 0.407 0.148 0.094

Ire 0.407 0.057 0.262 0.067 0.021 0.037 0.157 0.069 0.108

Ita 0.489 0.095 0.158 0.093 0.023 0.030 0.035 0.001 0.043

Net 1.477 0.597 0.001 0.001 0.035 0.027 0.212 0.054 0.021

Por 0.624 0.061 0.234 0.156 0.029 0.037 0.027 0.001 0.027

Spa 0.710 0.129 0.162 0.115 0.031 0.028 0.038 0.008 0.019

Post-crisis Period

yt,1 (Sov) yt,2 (Corp) yt,3 (Bank)

Country (θ1)1 (θ2)1 (θ3)1 (θ1)2 (θ2)2 (θ3)2 (θ1)3 (θ2)3 (θ3)3

Aus 0.050 0.057 0.168 0.001 0.034 0.015 0.001 0.116 0.007

Bel 0.038 0.047 0.157 0.001 0.058 0.021 0.001 0.078 0.014

Fin 0.057 0.061 0.170 0.001 0.040 0.012 0.019 0.029 0.021

Fra 0.047 0.053 0.154 0.057 0.028 0.036 0.250 0.091 0.035

Ger 0.047 0.069 0.191 1.483 0.497 0.001 0.985 0.274 0.001

Gre 1.023 0.124 0.286 0.020 0.009 0.024 1.493 0.653 0.001

Ire 0.038 0.052 0.159 0.484 0.155 0.018 0.057 0.042 0.030

Ita 0.014 0.030 0.134 0.001 0.002 0.022 0.104 0.048 0.034

Net 0.039 0.049 0.165 0.001 0.046 0.029 1.486 0.430 0.001

Por 0.104 0.051 0.188 0.001 0.070 0.015 0.001 0.107 0.026

Spa 0.066 0.054 0.135 1.511 0.493 0.001 0.001 0.142 0.014

Notes: estimated parameters of the idiosyncratic processes for sovereigns ymt,1 (interest rates

on 10-years maturity government bonds), corporates ymt,2 (interest rates on loans to non-

financial corporates) and banks ymt,3 (interest rates on deposits), during the sovereign-crisis

period (2010-2012) and the post-crisis period (2013-2015).
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Table 6: CoRiskin: pre-crisis and financial-crisis periods

Pre-crisis Period

CoRisksov (%) CoRiskcorp(%) CoRiskbank(%)

Country Mean SD Min Max Mean SD Min Max Mean SD Min Max

Aus 1.36 0.30 1.09 2.23 1.91 0.09 1.78 2.11 1.90 0.18 1.68 2.31

Bel 1.42 0.32 1.14 2.34 0.49 0.09 0.26 0.56 0.78 0.28 0.44 1.49

Fin -0.01 0.01 -0.03 0.01 4.28 0.32 3.97 5.16 0.52 0.13 0.39 0.84

Fra 0.60 0.14 0.47 1.01 0.92 0.09 0.73 1.07 1.11 0.31 0.84 2.01

Ger 0.44 0.13 0.32 0.79 2.01 0.23 1.56 2.33 2.20 0.55 1.75 3.87

Gre 0.96 0.17 0.82 1.45 0.99 0.18 0.83 1.51 -0.37 0.08 -0.64 -0.30

Ire 0.89 0.20 0.71 1.46 1.21 0.13 1.08 1.54 2.09 0.25 1.65 2.56

Ita 0.91 0.16 0.78 1.36 0.92 0.07 0.83 1.10 1.90 0.15 1.78 2.30

Net 0.95 0.22 0.75 1.57 1.97 0.17 1.67 2.23 0.60 0.09 0.52 0.85

Por 0.58 0.14 0.44 0.98 1.15 0.26 0.94 1.87 -0.04 0.15 -0.21 0.30

Spa 0.51 0.12 0.40 0.86 1.25 0.12 1.10 1.54 1.52 0.30 1.25 2.34

Financial-crisis Period

CoRisksov (%) CoRiskcorp(%) CoRiskbank(%)

Country Mean SD Min Max Mean SD Min Max Mean SD Min Max

Aus 1.86 0.78 0.97 3.52 -0.04 0.16 -0.54 0.13 6.86 1.56 4.08 8.98

Bel 4.82 1.73 2.46 8.19 -0.20 0.36 -0.75 0.14 4.17 0.55 3.07 4.98

Fin 3.98 1.40 2.02 6.62 2.05 1.61 0.11 5.35 3.60 0.91 1.98 4.83

Fra 6.66 2.65 3.76 12.13 1.26 0.52 0.43 2.10 5.32 1.40 2.84 7.11

Ger -2.18 0.97 -4.11 -1.00 5.94 2.49 2.02 9.40 7.79 1.76 4.32 10.06

Gre 3.19 1.34 1.71 6.00 2.12 1.28 0.58 4.63 3.19 1.15 1.24 4.58

Ire 1.28 0.69 0.34 2.29 5.44 2.34 2.56 10.83 -1.78 0.63 -2.52 -0.62

Ita -0.06 0.67 -0.92 0.94 7.37 3.43 2.38 13.57 2.86 0.51 2.13 4.01

Net 3.10 1.10 1.32 4.40 2.06 1.30 -0.01 3.85 3.77 1.18 1.77 5.27

Por 1.96 0.71 0.74 2.80 2.70 1.25 0.75 4.79 -1.80 0.34 -2.36 -1.28

Spa 1.79 0.71 0.94 3.25 2.14 1.14 0.35 3.65 -1.07 1.05 -2.19 0.59

Notes: summary statistics of CoRiskin for the three economic sectors (sovereigns, corporates and

banks) and during the pre-crisis period (2003-2006) and the financial-crisis period (2007-2009). Means

and standard deviations have been reported.
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Table 7: CoRiskin: sovereign-crisis and post-crisis periods

Sovereign-crisis Period

CoRisksov (%) CoRiskcorp(%) CoRiskbank(%)

Country Mean SD Min Max Mean SD Min Max Mean SD Min Max

Aus 2.86 0.53 1.73 3.62 3.21 0.48 2.40 3.98 2.45 0.62 1.35 3.44

Bel 2.59 0.28 2.17 3.15 0.44 0.30 -0.16 0.87 -1.63 0.34 -2.19 -1.11

Fin 1.47 0.39 0.77 2.09 5.04 0.86 3.60 6.42 4.29 0.88 2.86 5.74

Fra 4.02 0.89 2.65 6.08 0.66 0.21 0.23 0.95 1.95 0.30 1.43 2.45

Ger 1.78 0.45 0.97 2.44 -0.40 0.28 -0.97 -0.04 -2.02 0.21 -2.40 -1.74

Gre 3.61 1.22 1.71 5.71 1.55 0.31 1.05 2.00 -1.41 0.23 -1.76 -0.97

Ire 4.99 1.29 2.78 6.72 1.70 0.28 1.32 2.17 -0.48 0.03 -0.53 -0.42

Ita 2.82 1.19 1.45 4.83 1.47 0.31 1.05 2.00 0.43 0.17 0.18 0.71

Net 1.64 0.36 0.73 2.35 2.90 0.50 2.04 3.68 0.57 0.12 0.43 0.77

Por 10.80 3.06 5.70 16.10 4.36 0.53 3.51 5.12 0.07 0.07 -0.05 0.18

Spa 8.81 1.71 6.46 12.69 3.72 0.68 2.68 4.86 1.84 0.37 1.36 2.45

Post-crisis Period

CoRisksov (%) CoRiskcorp(%) CoRiskbank(%)

Country Mean SD Min Max Mean SD Min Max Mean SD Min Max

Aus -4.60 0.82 -5.88 -3.18 2.78 0.11 2.58 2.99 0.64 0.06 0.52 0.74

Bel 6.78 1.08 4.87 8.42 0.31 0.02 0.26 0.34 2.60 0.21 2.21 2.90

Fin -3.75 1.31 -6.79 -1.81 6.14 0.39 5.40 6.52 0.65 0.19 0.42 1.04

Fra 0.43 0.20 0.05 0.76 0.51 0.06 0.41 0.59 0.07 0.00 0.07 0.08

Ger 5.23 0.95 3.64 6.60 7.20 0.40 6.52 7.76 5.62 0.78 4.29 6.80

Gre -0.94 0.21 -1.21 -0.53 -0.72 0.07 -0.81 -0.59 0.89 0.16 0.55 1.12

Ire 1.64 0.67 0.68 2.81 -1.26 0.05 -1.37 -1.20 0.93 0.19 0.69 1.28

Ita 1.80 0.64 0.85 2.87 -1.57 0.07 -1.72 -1.47 0.52 0.13 0.35 0.78

Net 0.82 0.24 0.46 1.19 0.62 0.11 0.45 0.79 0.18 0.24 -0.11 0.62

Por -4.01 0.98 -5.70 -2.44 1.61 0.08 1.44 1.72 1.42 0.61 0.25 2.10

Spa 2.63 1.15 0.91 4.24 1.78 0.07 1.65 1.85 4.15 0.46 3.43 4.90

Notes: summary statistics of CoRiskin for the three economic sectors (sovereigns, corporates and

banks) and during the sovereign-crisis period (2010-2012) and the post-crisis period (2013-2015).

Means and standard deviations have been reported.
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Table 8: Network centrality measures: pre-crisis and financial-crisis periods

Pre-crisis Period

Sovereign Corporate Bank

Country DC Eigen. DC Eigen. DC Eigen.

Aus 0.701 0.227 0.931 0.277 1.448 0.990

Bel 0.971 0.158 0.161 0.000 0.995 0.356

Fin 0.015 0.000 2.026 1.000 0.186 0.121

Fra 0.916 0.196 0.227 0.000 0.761 0.000

Ger 0.915 0.211 1.100 0.000 1.236 1.000

Gre 1.161 1.000 0.597 0.520 -0.308 0.781

Ire 0.877 0.231 0.791 0.378 0.707 0.000

Ita 1.061 0.954 0.516 0.325 1.324 0.000

Net 1.219 0.125 1.149 0.226 0.273 0.000

Por 0.979 0.578 0.717 0.710 0.240 0.000

Spa 0.873 0.340 0.573 0.694 0.739 0.000

Financial-crisis Period

Sovereign Corporate Bank

Country DC Eigen. DC Eigen. DC Eigen.

Aus 1.064 0.210 -0.106 0.099 1.610 0.894

Bel 0.721 0.010 -0.044 0.050 0.821 0.806

Fin 0.916 0.307 0.712 0.298 0.962 0.244

Fra 2.402 0.973 0.435 0.135 1.185 0.548

Ger -0.185 1.000 1.439 0.710 1.921 0.466

Gre 1.019 0.189 0.691 0.794 1.038 0.000

Ire 0.512 0.182 1.512 0.758 0.021 0.000

Ita 0.156 0.000 2.383 0.938 0.784 0.000

Net 0.887 0.585 0.242 0.118 1.093 0.927

Por 0.451 0.277 0.639 1.000 -0.012 0.000

Spa 1.309 0.423 0.276 0.210 0.154 1.000

Notes: degree of connectivity (DC) and eigenvector centrality (Eigen.) measures referred to

the three economic sectors (sovereigns, corporates and banks) during the pre-crisis period

(2003-2006) and the financial-crisis period (2007-2009).
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Table 9: Network centrality measures: sovereign-crisis and post-crisis periods

Sovereign-crisis Period

Sovereign Corporate Bank

Country DC Eigen. DC Eigen. DC Eigen.

Aus 1.170 0.388 1.379 0.000 1.379 0.000

Bel 0.872 0.220 -1.070 0.174 -1.070 0.000

Fin 0.651 1.000 2.592 0.698 2.592 0.000

Fra 1.663 0.000 0.911 0.000 0.911 0.000

Ger 1.009 0.862 -0.794 0.000 -0.794 0.000

Gre 0.676 0.000 -0.632 0.836 -0.632 0.217

Ire 0.514 0.000 -0.100 0.880 -0.100 0.000

Ita 0.765 0.000 0.174 0.000 0.174 0.356

Net 0.940 0.612 0.357 0.301 0.357 0.332

Por 0.813 0.000 0.047 1.000 0.047 1.000

Spa 1.614 0.000 1.204 0.516 1.204 0.482

Post-crisis Period

Sovereign Corporate Bank

Country DC Eigen. DC Eigen. DC Eigen.

Aus 0.069 0.000 1.381 0.650 0.125 0.728

Bel 2.242 0.565 0.025 0.192 1.023 0.150

Fin -0.147 0.619 2.011 1.000 0.316 0.268

Fra 0.784 0.000 0.213 0.000 -0.012 0.059

Ger 1.883 0.000 1.872 0.000 2.773 1.000

Gre -0.705 0.000 -0.192 0.019 0.391 0.676

Ire 0.571 0.068 -0.183 0.126 0.513 0.094

Ita 1.286 0.312 0.036 0.216 0.189 0.353

Net -0.200 0.769 0.383 0.616 -0.232 0.002

Por 0.540 1.000 0.479 0.000 0.878 0.635

Spa 0.584 0.000 0.707 0.348 1.805 0.719

Notes: degree of connectivity (DC) and eigenvector centrality (Eigen.) measures referred

to the three economic sectors (sovereigns, corporates and banks) during the sovereign-crisis

period (2010-2012) and the post-crisis period (2013-2015).
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Table 10: Rankings comparison: pre-crisis and financial-crisis periods

Pre-crisis Period

Sovereign Corporate Bank

CoRin CoRout DC Eigen. CoRin CoRout DC Eigen. CoRin CoRout DC Eigen.

Bel Net Net Gre Fin Ger Fin Fin Ger Ita Aus Ger

Aus Ita Gre Ita Ger Net Net Por Ire Spa Ita Aus

Gre Bel Ita Por Net Fin Ger Spa Ita Ire Ger Gre

Net Fra Por Spa Aus Gre Aus Gre Aus Ger Bel Bel

Ita Spa Bel Ire Spa Ire Ire Ire Spa Fra Fra Fin

Ire Ger Fra Aus Ire Ita Por Ita Fra Net Spa Ita

Fra Aus Ger Ger Por Aus Gre Aus Bel Aus Ire Fra

Por Por Ire Fra Gre Por Spa Net Net Bel Net Spa

Spa Gre Spa Bel Ita Bel Ita Ger Fin Por Por Ire

Ger Ire Aus Net Fra Spa Fra Fra Por Fin Fin Net

Fin Fin Fin Fin Bel Fra Bel Bel Gre Gre Gre Por

Financial-crisis Period

Sovereign Corporate Bank

CoRin CoRout DC Eigen. CoRin CoRout DC Eigen. CoRin CoRout DC Eigen.

Fra Fra Fra Ger Ita Ita Ita Por Ger Aus Ger Spa

Bel Bel Spa Fra Ger Ire Ire Ita Aus Ger Aus Net

Fin Aus Aus Net Ire Ger Ger Gre Fra Bel Fra Aus

Gre Spa Gre Spa Por Fin Fin Ire Bel Net Net Bel

Net Net Fin Fin Spa Gre Gre Ger Net Fin Gre Fra

Por Fin Net Por Gre Fra Por Fin Fin Gre Fin Ger

Aus Gre Bel Aus Net Por Fra Spa Gre Ita Bel Fin

Spa Por Ire Gre Fin Spa Spa Fra Ita Fra Ita Gre

Ire Ita Por Ire Fra Bel Net Net Spa Por Spa Ita

Ita Ire Ita Bel Aus Net Bel Aus Ire Ire Ire Ire

Ger Ger Ger Ita Bel Aus Aus Bel Por Spa Por Por

Notes: rankings obtained with CoRiskin, CoRiskout, degree of connectivity and eigenvector centrality

measures, ordered from the highest to the lowest and referred to the three economic sectors (sovereigns,

corporates, banks) and to the pre-crisis period (2003-2006) and the financial-crisis period (2007-2009).
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Table 11: Rankings comparison: sovereign-crisis and post-crisis periods

Sovereign-crisis Period

Sovereign Corporate Bank

CoRin CoRout DC Eigen. CoRin CoRout DC Eigen. CoRin CoRout DC Eigen.

Por Gre Fra Fin Fin Spa Fin Por Fin Fin Fin Por

Spa Spa Spa Ger Por Por Aus Ire Aus Spa Aus Spa

Ire Por Aus Net Spa Fin Spa Gre Fra Fra Spa Ita

Fra Ire Ger Aus Aus Gre Fra Fin Spa Aus Fra Net

Gre Fra Net Bel Net Net Net Spa Net Net Net Gre

Aus Ita Bel Fra Ire Aus Ita Net Ita Ita Ita Fin

Ita Aus Por Spa Gre Ita Por Bel Por Por Por Aus

Bel Bel Ita Por Ita Bel Ire Aus Ire Ire Ire Fra

Ger Fin Gre Ita Fra Ire Gre Fra Gre Gre Gre Ire

Net Ger Fin Gre Bel Fra Ger Ita Bel Ger Ger Ger

Fin Net Ire Ire Ger Ger Bel Ger Ger Bel Bel Bel

Post-crisis Period

Sovereign Corporate Bank

CoRin CoRout DC Eigen. CoRin CoRout DC Eigen. CoRin CoRout DC Eigen.

Bel Ita Bel Por Ger Ger Fin Fin Ger Ger Ger Ger

Ger Bel Ger Net Fin Fin Ger Aus Spa Spa Spa Aus

Spa Ire Ita Fin Aus Aus Aus Net Bel Por Bel Spa

Ita Ger Fra Bel Spa Por Spa Spa Por Bel Por Gre

Ire Spa Spa Ita Por Spa Por Ita Ire Ire Ire Por

Net Por Ire Ire Net Bel Net Bel Gre Fra Gre Ita

Fra Fra Por Ger Fra Net Fra Ire Fin Aus Fin Fin

Gre Aus Aus Fra Bel Fra Ita Gre Aus Ita Ita Bel

Fin Net Fin Spa Gre Ita Bel Ger Ita Fin Aus Ire

Por Fin Net Aus Ire Ire Ire Por Net Gre Fra Fra

Aus Gre Gre Gre Ita Gre Gre Fra Fra Net Net Net

Notes: rankings obtained with CoRiskin, CoRiskout, degree of connectivity and eigenvector centrality

measures, ordered from the highest to the lowest and referred to the three economic sectors (sovereigns,

corporates, banks) and to the sovereign-crisis period (2010-2012) and the post-crisis period (2013-2015).

44



Table 12: Correlation coefficients between rankings

CoRiskin

Sovereign Corporate Bank

Period DC Eigen. DC Eigen. DC Eigen.

2003-2006 0.436 0.136 0.936 0.373 0.764 0.245

2007-2009 0.582 0.064 0.809 0.811 0.936 0.518

2010-2012 0.136 -0.736 0.691 0.655 0.982 0.345

2013-2015 0.736 0.018 0.927 0.245 0.982 0.573

CoRiskout

Sovereign Corporate Bank

Period DC Eigen. DC Eigen. DC Eigen.

2003-2006 0.527 -0.136 0.782 0.118 0.591 -0.182

2007-2009 0.791 0.109 0.982 0.709 0.755 0.318

2010-2012 -0.100 -0.818 0.445 0.618 0.973 0.445

2013-2015 0.864 0.173 0.927 0.264 0.809 0.445

Notes: Spearman correlation coefficients between CoRiskin and CoRiskout rankings and

rankings based on, respectively, degree centrality (DC) and eigenvector centrality (Eigen.),

referred to the three economic sectors (sovereigns, corporates, banks) and to the four time-

periods (pre-crisis, financial-crisis, sovereign-crisis, post-crisis).
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Figure 3: Sovereigns interest rates
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Notes: monthly time evolution of 10-years maturity bond interest rates and 3-months Euribor,

from January 2003 until December 2015 and referred to 11 Eurozone countries.

Figure 4: Corporates interest rates
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Notes: monthly time evolution of aggregate interest rates on loans to non-financial corporates

and 3-months Euribor, from January 2003 until December 2015 and referred to 11 Eurozone

countries.
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Figure 5: Banks interest rates
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Notes: monthly time evolution of aggregate interest rates on deposits to both families and

non-financial corporates, and 3-months Euribor, from January 2003 until December 2015 and

referred to 11 Eurozone countries.

47



Figure 6: Partial correlation networks
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Notes: partial correlation networks for the 11 european countries considered in the sample,

based on the spread measures for sovereigns Zit,1 (left), corporates Zit,2 (middle) and banks Zit,3
(right), during the pre-crisis (first row), financial-crisis (second row), sovereign-crisis (third

row) and post-crisis (fourth row) periods. Green lines stand for positive partial correlations,

red lines for negative correlations; the ticker the line, the stronger the connection.

48



F
ig

u
re

7:
S
ec

to
r-

sp
ec

ifi
c
P
D

,
C
oR

is
k
in

an
d
T
P
D

Ja
n 

03
Ju

l 0
4

Ju
l 0

5
Ju

l 0
6

Ju
l 0

7
Ju

l 0
8

Ju
l 0

9
Ju

l 1
0

Ju
l 1

1
Ju

l 1
2

Ju
l 1

3
Ju

l 1
4

tim
e

051015202530

au
s.

be
l.

fin
.

fra ge
r

gr
e

ire ita ne
t

po
r

sp
a

PD (%)
PD

 S
ov

er
ei

gn
s

Ja
n 

03
Ju

l 0
4

Ju
l 0

5
Ju

l 0
6

Ju
l 0

7
Ju

l 0
8

Ju
l 0

9
Ju

l 1
0

Ju
l 1

1
Ju

l 1
2

Ju
l 1

3
Ju

l 1
4

tim
e

051015202530

au
s

be
l

fin fra ge
r

gr
e

ire ita ne
t

po
r

sp
a

PD (%)

PD
 C

or
po

ra
te

s

Ja
n 

03
Ju

l 0
4

Ju
l 0

5
Ju

l 0
6

Ju
l 0

7
Ju

l 0
8

Ju
l 0

9
Ju

l 1
0

Ju
l 1

1
Ju

l 1
2

Ju
l 1

3
Ju

l 1
4

tim
e

051015202530

au
s

be
l

fin fra ge
r

gr
e

ire ita ne
t

po
r

sp
a

PD (%)

PD
 B

an
ks

Ja
n 

03
Ju

l 0
4

Ju
l 0

5
Ju

l 0
6

Ju
l 0

7
Ju

l 0
8

Ju
l 0

9
Ju

l 1
0

Ju
l 1

1
Ju

l 1
2

Ju
l 1

3
Ju

l 1
4

tim
e

-10-505101520

au
s

be
l

fin fra ge
r

gr
e

ire ita ne
t

po
r

sp
a

CoRisk_in (%)

C
oR

is
k_

in
 S

ov
er

ei
gn

s

Ja
n 

03
Ju

l 0
4

Ju
l 0

5
Ju

l 0
6

Ju
l 0

7
Ju

l 0
8

Ju
l 0

9
Ju

l 1
0

Ju
l 1

1
Ju

l 1
2

Ju
l 1

3
Ju

l 1
4

tim
e

-10-505101520

au
s

be
l

fin fra ge
r

gr
e

ire ita ne
t

po
r

sp
a

CoRisk_in (%)

C
oR

is
k_

in
 C

or
po

ra
te

s

Ja
n 

03
Ju

l 0
4

Ju
l 0

5
Ju

l 0
6

Ju
l 0

7
Ju

l 0
8

Ju
l 0

9
Ju

l 1
0

Ju
l 1

1
Ju

l 1
2

Ju
l 1

3
Ju

l 1
4

tim
e

-10-505101520

au
s

be
l

fin fra ge
r

gr
e

ire ita ne
t

po
r

sp
a

CoRisk_in (%)

C
oR

is
k_

in
 B

an
ks

Ja
n 

03
Ju

l 0
4

Ju
l 0

5
Ju

l 0
6

Ju
l 0

7
Ju

l 0
8

Ju
l 0

9
Ju

l 1
0

Ju
l 1

1
Ju

l 1
2

Ju
l 1

3
Ju

l 1
4

tim
e

051015202530

au
s

be
l

fin fra ge
r.

gr
e

ire ita ne
t

po
r

sp
a

TPD (%)

To
ta

l_
PD

 S
ov

er
ei

gn
s

Ja
n 

03
Ju

l 0
4

Ju
l 0

5
Ju

l 0
6

Ju
l 0

7
Ju

l 0
8

Ju
l 0

9
Ju

l 1
0

Ju
l 1

1
Ju

l 1
2

Ju
l 1

3
Ju

l 1
4

tim
e

051015202530

au
s

be
l

fin fra ge
r.

gr
e

ire ita ne
t

po
r

sp
a

TPD (%)

To
ta

l_
PD

 C
or

po
ra

te
s

Ja
n 

03
Ju

l 0
4

Ju
l 0

5
Ju

l 0
6

Ju
l 0

7
Ju

l 0
8

Ju
l 0

9
Ju

l 1
0

Ju
l 1

1
Ju

l 1
2

Ju
l 1

3
Ju

l 1
4

tim
e

051015202530

au
s

be
l

fin fra ge
r.

gr
e

ire ita ne
t

po
r

sp
a

TPD (%)

To
ta

l_
PD

 B
an

ks

N
o
te

s:
se

ct
or

-s
p

ec
ifi

c
d

ef
au

lt
p

ro
b

ab
il

it
ie

s
P
D
i t,
{1
,2
,3
}

(t
op

),
C
oR
is
k
in

m
ea

su
re

s
(m

id
d

le
)

an
d

to
ta

l
d

ef
au

lt
p

ro
b

a
b

il
it

ie
s
T
P
D
i t,
{1
,2
,3
}

(b
o
tt

o
m

)

fr
om

20
03

u
n
ti

l
20

15
,

fo
r

th
e

so
ve

re
ig

n
(l

ef
t)

,
co

rp
or

at
e

(m
id

d
le

)
an

d
b

an
k

(r
ig

h
t)

se
ct

or
s

an
d

re
fe

rr
ed

to
1
1

E
u

ro
zo

n
e

co
u

n
tr

ie
s.

49



Figure 8: Aggregate total default probabilities TPDi
country
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Notes: total default probabilities aggregated at the country level TPDi
country, from 2003 until

2015 and referred to 11 Eurozone countries.
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